博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
PageRank 算法随记
阅读量:6263 次
发布时间:2019-06-22

本文共 881 字,大约阅读时间需要 2 分钟。

将链接视作投票

递归的意思是:假如现在要求C,指向C的入链只有B,那么得先求B的重要度,B重要度的大小取决于指向B的入链以及这些入链的重要度。

简单的递归公式

流模型

“随机”的解释:从i这个页面开始,它可能有di种选择,而且他做每一种选择的时候,选择的概率是相同的,即他决定到下一个页面是一个随机的选择(应该跳到那个页面),我们把上面图中的矩阵叫随机邻接矩阵。

矩阵方程

Σri=1在这里表示限定条件,和流方程一样,不加限定条件会有无穷多个解。所以这里的限定条件是假定所有网页的重要度求和等于1。

矩阵的行和r向量相乘的时候就是对流公式的表示。

矩阵方程实例

幂迭代方法

两个向量的1范数,其实是对应位置的差值绝对值之和。

r向量是所有网页的重要程度组成的向量。

幂迭代求解

总共是3个节点,初始化每个节点的重要度分别是1/3。

r=r'的意思是,最后求得r'的值趋于稳定,不再变化。

随机游动的解释

如果有很多页面指向页面j的话,那么它的重要度是很高的。

平稳分布

存在性和唯一性

在节点少的图中,如果新增一个节点的话,整个图是需要重新算的。但是在亿级节点的话,多一个节点少一个节点,对图的影响不一定大。像百度和谷歌就不会频繁的去计算。

按照流公式迭代不一定会收敛到我们想要的结果。

收不收敛?

a,b节点图,如果用1,0去初始化的话,会发现他们一直再对调。

ABCD图,所有的权重最后都归到了C这一个点。

随着矩阵运算的迭代,拿到的ABCD四个值都会非常非常趋于零。

PageRank问题

m这个点就是个陷阱问题,最终所有的权重都被吸到m这个点上。

终结者问题,最后的迭代结果是零零零,m这个点没有任何出链。

解决办法:随机传送

e代表全部的网页,就是说浏览者会随机的在全部网页中打开一个。

pagerank是一个针对图的算法,有名是因为,最早的时候谷歌用它做了一个所谓比较公正的网络排序,但后来人们对他做了各种优化,争取通过他的规则,把自己的网页提高比较靠前的位置,也通过优化来使结果更加的稳定。

pagerank可以帮你在有关联的图中找到最重要的节点。

转载地址:http://sdupa.baihongyu.com/

你可能感兴趣的文章
Eclipse自动补全+常用快捷键
查看>>
Dubbo 浅读
查看>>
payload有效载荷(转)
查看>>
利用谷歌控制台console调用后台代码
查看>>
jquery 点击按钮实现listbox的显示与隐藏,点击其他地方按钮外的地方,隐藏listbox...
查看>>
CSS3 盒阴影(box-shadow)详解
查看>>
PHP基础之 file_get_contents() 函数
查看>>
跨站请求伪造攻击 CSRF
查看>>
strace
查看>>
linux mysql命令
查看>>
CentOS+Nginx+PHP+MySQL详细配置(图解)
查看>>
冲刺(5)
查看>>
SQL判断字段列是否存在
查看>>
LeetCode - Find Duplicate Subtrees
查看>>
搭建android开发环境Android Studio
查看>>
求$y=Asin(\omega x+\phi)+k$类的解析式
查看>>
用PROCEDURE ANALYSE优化MYSQL表结构
查看>>
从4个方面提高用户体验
查看>>
【10-25】OOP基础-飞机游戏知识点
查看>>
HTC仅限拨打紧急电话
查看>>